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Abstract
A Datta–Das spin field effect transistor (FET) made of a nonballistic quantum
wire with a single transport channel is considered. Although there is no
spin relaxation and the spin precession is not influenced by elastic scattering,
successful spin FET operation can still be prevented by the conductance
fluctuations. The necessary condition for the desired spin FET operation is
obtained.

1. Introduction

Spin-dependent transport has been a subject of persistent interest [1, 2]. When successfully
combined with semiconductor functionalities [3–5] spin-based electronics or spintronics may
have considerable impact on future electronic device applications. One of the representative
spintronic devices is the so-called spin field effect transistor (spin FET) proposed by Datta and
Das [6]. The core idea of this device is to induce spin precession by the Rashba spin–orbit
interaction [7] in a two-dimensional electron gas (2DEG) and to use spin-dependent materials,
such as ferromagnets, as electron injectors and collectors so that they sense the spin precession;
the conductance of the device varies sinusoidally with the spin precession angle.

While the initial proposal by Datta and Das assumes ballistic transport, it is still
essential [8–13] to have a good understanding of how sensitive the spin FET is to scattering
events. For example a sample may not be as ideal as desired and unintended impurities in
the 2DEG may cause elastic scattering. The scattering may also be caused by tunnelling
barriers [14] introduced at the 2DEG–injector (collector) interface to enhance the spin injection
(detection) efficiency. Because of the difficulties in efficiently injecting spin currents from a
ferromagnetic metal into a semiconductor, a working prototype of the Datta–Das spin FET has
not yet been made.

Elastic scattering can induce spin relaxation when combined with spin–orbit interaction
(see for instance [15]). Semiclassical Monte Carlo calculations [8–10, 16] reported that the
spin relaxation can be suppressed by reducing the channel width w of the 2DEG, and that the
ideal sinusoidal variation of the spin FET signal can be achieved [8]. In a recent study it has
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Figure 1. Schematic diagram of a Datta–Das spin field effect transistor made of a nonballistic
single-channel quantum wire.

been shown that the suppression takes place even in wider channels [17]. Here we go beyond
the semiclassical treatment and focus on the quantum mechanical effects which become more
important as w reduces.

It was suggested [18] that a spin FET with only one transverse mode is desired to
achieve large current modulation and low power consumption. Recently it was reported [19]
that a single-mode spin FET exhibits interesting mesoscopic phenomena. In this paper, we
consider a spin FET made of a nonballistic quantum wire (w → 0) with one transport
channel (figure 1). Experimentally, the formation of several micron-long quantum wires in
GaAs/AlGaAs heterostructures has been reported [20]. Although elastic scattering obviously
reduces the signal of the spin FET, what is important is the issue of its sinusoidal modulation
by the Rashba interaction. We address this issue by employing a full quantum mechanical
analysis (in the single-particle level) [21, 22] for the nonmagnetic scattering effects on such a
one-dimensional (1D) spin FET. We find that even though the spin precession is not influenced
by elastic scattering in the absence of magnetic field, a successful operation of a nonballistic
1D spin FET may still be prevented by the phenomenon of the conductance fluctuations unless
a certain condition, (6), is satisfied.

2. Theory

A ballistic 2DEG in the xz plane can be described by the following Hamiltonian:

H 2D
0 = p2

x + p2
z

2m∗ + Vc(z)+ α
(σz px − σx pz)

h̄
, (1)

where the first and second terms are kinetic energy and confining potential terms, respectively,
and the last term represents the Rashba interaction. Here m∗ is the effective mass and α is the
Rashba coefficient, whose value can be controlled [23] by the gate electrode. The Rashba term
in H 2D

0 is formally the same as the Zeeman term −gμB �σ · �BR with an effective magnetic
field �BR = −(α/gμBh̄)(px ẑ − pzx̂) which, unlike the real field, depends on the electron
momentum. Vc(z) determines the width w of the 2DEG in the transverse direction z. The
quantization in the transverse direction results in quantized subbands, each of which provides
a transport channel. When w � h̄2/m∗α the intersubband mixing can be neglected [6].
Moreover the number of available channels reduces to two, including the spin degree of
freedom, for sufficiently small w. In such a situation the transport via two available channels is
given by a simple 1D Hamiltonian:

H0 = p2
x

2m∗ + ασz
px

h̄
. (2)

Note that due to the quantization of the transverse direction the term σx pz does not appear in
H0 and, hence, the z-component of the spin becomes a conserved quantity. Thus the two spin
channels can be characterized as spin-up (σz =↑) and spin-down (σz =↓) channels.
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In the presence of impurities the scattering effects within the two spin channels can be
expressed by adding a potential term to (2),

H = p2
x

2m∗ + V (x)+ ασz
px

h̄
, (3)

where V (x) is the nonmagnetic scattering potential causing spin-conserved scattering (for
w � h̄2/m∗α). Here we follow the standard scattering matrix approach [24]. In order to focus
on scattering effects within the quantum wire of length L (V (x) is nonzero only in 0 � x � L)
we assume that the injector and the detector are ideal: both of them are 100% spin polarized
and the injection–detection efficiency is perfect1. Thus the segment with length L describes
the nonballistic quantum wire while the regions x < 0 and x > L correspond to fictitious
leads which are free from any scattering (see figure 1). Though the introduction of them is
rather arbitrary, scattering effects within the quantum wire are still correctly described by this
approach [24].

3. Scattering effects

Consider a left-incoming scattering state ψ = c+ψ+ + c−ψ−, which is a superposition of the
spin-up scattering state ψ+ = φ+χ+ and the spin-down scattering state ψ− = φ−χ−. Here
φ+(−) = exp[ik+(−)x] + r+(−) exp[−ik−(+)x] for x < 0 and φ+(−) = t+(−) exp[ik+(−)x] for
x > L, where E = h̄2k2+,−/2m∗ ± αk+,−. The spinors are χ+ = (1, 0)T and χ− = (0, 1)T

and the conservation of σz , [H, σz] = 0, is utilized. Let θ0 and ϕ0 (θL and ϕL) denote the
polar and azimuthal angles of the spin direction at x = 0� (x = L�) with respect to the
z-axis. Just before the injection into the quantum wire, x = 0�, tan(θ0/2) = |c−/c+| and
eiϕ0 = (c−/c+)|c−/c+|. Right after the transmission, x = L�,

tan
θL

2
=

∣
∣
∣
∣

c−t−
c+t+

∣
∣
∣
∣
, eiϕL = (c−/c+)(t−/t+)

|c−/c+||t−/t+| ei(k−−k+)L . (4)

For simplicity we assume below that injected electrons are polarized along the +x̂-direction
(figure 1) and take the ratio c−/c+ to be one. The ratio t−/t+ determines effects of the scattering
on the spin precession. For the ballistic case t+ = t− = 1, thus θprec ≡ θL − θ0 = 0 and
ϕprec ≡ ϕL − ϕ0 = 2m∗αL/h̄2. Then, as α varies, the conductance, G ∝ cos2(ϕprec/2), of the
ballistic spin FET exhibits a sinusoidal variation.

To address nonballistic situations (mean free path l � L) we first perform the gauge
transformation2

ψ̃ = ei(m∗αx/h̄2)σzψ. (5)

Upon transformation, the Schrödinger equations for ψ̃+ and ψ̃− become identical, h̃ψ̃+,− =
Ẽψ̃+,−, where h̃ = p2

x/2m∗ + V (x) and Ẽ = E + m∗α2/2h̄2. Note that the problem has now
reduced to the problem of two identical copies of spinless electron propagation in potential
V (x). Then ψ̃+(Ẽ) = ψ̃−(Ẽ) (see [12]) and t̃+(Ẽ) = t̃−(Ẽ) = t̃(Ẽ). Since the transmission
amplitudes before and after the gauge transformation are related by t+(E) = t̃(Ẽ) = t−(E),
one obtains t−/t+ = 1 regardless of V (x). Equation (4) then indicates that the spin precession
angles θprec and ϕprec have exactly the same values as in the ballistic case. Therefore the spin
precession is ‘inert’ to the scattering.

When |t2+| = |t2−|, the conductance of the spin FET is proportional to |t+,−|2 cos2(ϕprec/2),
where both |t+,−|2 and ϕprec are evaluated at E = EF. Since ϕprec shows the same behaviour

1 We also ignore Fabry–Perot-type coherent multiple scattering effects between the injector and the detector discussed
by Mireless and Kirzcenow [25, 4].
2 A similar transformation has been exploited in [12].
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Figure 2. Schematic plots of the conductance G , varying between zero and 1 in units of e2/h, of
a 1D Datta–Das spin FET as a function of the Rashba coefficient α. (a) Ideal sinusoidal variation.
(b) Sample-specific random signal due to conductance fluctuations.

as in the ballistic case, the desired sinusoidal modulation of G as a function of α can be
achieved if |t+,−(EF)|2 remains (almost) independent of α. In nonballistic environments,
however, |t+,−(EF)|2 is sensitive to α since |t+,−(EF)| = t̃+,−(ẼF = EF + m∗α2/2h̄2) and
t̃+,−(Ẽ) shows strong fluctuations as a function of Ẽ , for a fixed random potential, due to the
phenomenon of the conductance fluctuations [24]. For the sinusoidal variation of G in the range
αav −	α/2 < α < αav +	α/2 one thus needs

	

(
m∗α2

2h̄2

)

= m∗αav	α

h̄2
� Ec, (6)

where Ec ≈ (h̄vF/L)(l/L) is the Thouless correlation energy [26] over which t̃+,−(Ẽ) is
correlated [24] and vF is the Fermi velocity3. Equation (6) is the condition for the successful
sinusoidal variation of the spin FET signal. For the case 	α = π h̄2/m∗L , the value for
	ϕprec = 2π in the ballistic case, and (6) reduces to L � l(h̄vF/παav), which can be fulfilled
simultaneously with the nonballisticity condition l � L since αav/h̄ is usually smaller than
vF.4 Figures 2(a) and (b) show schematic plots of G as a function of α in two situations;
(a) when (6) is satisfied, showing the desired sinusoidal variation, and (b) when it is severely
violated. Figure 2(b) indicates the sample-specific random signal arising as a result of strong
fluctuations in t̃+,−(ẼF = EF + m∗α2/2h̄2), which depends significantly on α. Lastly, two
remarks are in order. First, for a given 	α, smaller αav is preferred by (6) for the minimal
‘damage’ by the conductance fluctuations. Second, the amplitude of the G modulation is
subject to sample-to-sample fluctuations even when (6) is satisfied, since |t+,−|2 depends on
details of the nonballistic samples.

4. Inhomogeneous Rashba coefficient

Lastly we consider briefly the case where the Rashba coefficient α is not homogeneous. An
example is the case where the gate in figure 1 covers only a part of the quantum wire, so that α
becomes an x-dependent function α(x). To address the effects of its x dependence we consider
the following Hamiltonian:

H inh = p2
x

2m∗ + V (x)+ σz

2h̄
[α(x)px + pxα(x)]. (7)

Note that the Rashba term in (3) is replaced by its symmetric combination, so that the
Hamiltonian remains Hermitian. The gauge transformation will be a generalization of equation
(5),

�̃ = ei(m∗/h̄2)σz
∫ x dx′α(x′)�, (8)

3 To be precise, vF is the Fermi velocity in the gauge-transformed system. However, when vF is sufficiently larger
than α/h̄, which is usually valid, the Fermi velocity in the original system is again comparable to vF and we may not
distinguish the two.
4 For example, αav/h̄vF ≈ 0.1 for In1−x Alx As/In1−x Gax .
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where � is the scattering state in inhomogeneous system. Under this transformation the
Schrödinger equations for �̃+ and �̃− become identical, h̃inh�̃+,− = Ẽ�̃+,−, where h̃inh =
p2

x/2m∗ + V inh(x). Here the effective potential V inh(x),

V inh(x) = V (x)− m∗α2(x)

2h̄2
, (9)

is ‘renormalized’ by α(x). Thus the inhomogeneous α can induce backscattering and reduce the
mean free path l just as an inhomogeneous V (x) does. Note that for a given slope dα/dx this
backscattering effect becomes stronger as the average α value gets larger since α(x) affects
V inh(x) quadratically. Once this reduction of l by the inhomogeneous α(x) is taken into
account, the rest of the analysis is the same as for the homogeneous α case and the results
will be similar.

5. Conclusion

In summary, we have studied a 1D Datta–Das spin FET made of a nonballistic quantum wire
and identified the necessary condition, (6), for the sinusoidal modulation of the spin FET signal
in nonballistic environments. We suggest that the impurity scattering effects, which can be very
harmful for the spin FET operation, can be avoided by tuning the parameters of a spin FET to
satisfy the inequality (6) we presented.
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